3D-printed porous stamp Image Gallegos, Kaehr et al, Sandia National Labs, University of New Mexico Electronic components can also be manufactured by roll-to-roll processes, where a special stamp transfers the printing material to the substrate. However, common defects, such us haloing or bridging, negatively affect the performance of printed materials for electronics applications. To solve this problem, researchers around Michael Gallegos from Sandia National Laboratories and The University of New Mexico (US) work on a new approach: 3D-printed mechanical metamaterials for metered ink deposition. These porous stamps use capillary forces during mechanical deformation to enable metered material transfer. One of the main drawbacks in roll-to-roll processes is the excess amount of ink left on the substrate after lifting off the stamp creating aforementioned defects. Therefore, the researchers aim at making the material dispense more controllable. They used a Nanoscribe 3D printer to fabricate stamps with micrometer-sized pores. In the […]

Skip to toolbar